Abstract

Coherent structures and their time evolution in the logarithmic region of a turbulent boundary layer investigated by means of 3D space–time correlations and time-dependent conditional averaging techniques are the focuses of the present paper. Experiments have been performed in the water tunnel at TU Delft measuring the particle motion within a volume of a turbulent boundary layer flow along a flat plate at a free-stream velocity of 0.53 m/s at Re ? = 2,460 based on momentum thickness by using time-resolved tomographic particle image velocimetry (PIV) at 1 kHz sampling rate and particle tracking velocimetry (PTV). The obtained data enable an investigation into the flow structures in a 3D Eulerian reference frame within time durations corresponding to 28 ?/U. An analysis of the time evolution of conditional averages of vorticity components representing inclined hairpin-like legs and of Q2- and Q4-events has been performed, which gives evidence to rethink the early stages of the classical hairpin development model for high Reynolds number TBLs. Furthermore, a PTV algorithm has been applied on the time sequences of reconstructed 3D particle image distributions identifying thousands of particle trajectories that enable the calculation of probability distributions of the three components of Lagrangian accelerations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call