Abstract

Experimental and numerical studies of turbulent fluid motion in a free surface are presented. The flow is realized experimentally on the surface of a tank filled with water stirred well below the surface. Numerically, it is modelled by free-slip boundary conditions. The surface flow is unconventional: it is not incompressible and neither kinetic energy nor enstrophy is conserved in the limit of zero fluid viscosity and in the absence of external driving as is the case for incompressible two-dimensional turbulent flows. The dynamics of passive Lagrangian tracers that are advected in such flows are dominated by rapidly changing patches of the surface flow divergence. Owing to compressibility, particles form clusters within multifractal mass distributions. Also studied is the motion of pairs and triplets of particles. The mean square separation shows an extended range with a reduced scaling exponent in comparison with the classical Richardson value. Clustering is also manifest in strongly deformed triangles spanned within triplets of tracers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.