Abstract

The relation between Eulerian structure function’s scaling exponents and Lagrangian ones in turbulent channel flows is explored both theoretically and numerically. A nonlinear parametric transformation between Eulerian structure function’s scaling exponents and Lagrangian ones is derived, following Landau and Novikov’s frame work. This relation is then compared to some known experimental and numerical results, but mainly to our DNS (direct numerical simulation) results of a fully developed channel flow with Reτ = 100. The scaling exponents are evaluated in terms of the ESS (extended self-similarity) method, since the Reynolds number is too low to make the standard scaling laws applicable. The agreement between theory and simulation is satisfactory

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call