Abstract

Euler’s polynomial f (n) = n2 + n + 41 is famous for producing 40 different prime numbers when the consecutive values 0, 1, …, 39 are substituted: see Table 1. Some authors, including Euler, prefer the polynomial f (n − 1) = n2 − n + 41 with prime values for n = 1, …, 40. Since f (−n) = f (n − 1), f (n) actually takes prime values (with each value repeated once) for n = −40, −39, …, 39; equivalently the polynomial f (n − 40) = n2 − 79n + 1601 takes (repeated) prime values for n = 0, 1, …, 79.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.