Abstract

Motivated by recent studies in geophysical and planetary sciences, we investigate the PDE-analytical aspects of time-averages for barotropic, inviscid flows on a fast rotating sphere S2. Of particular interest is the incompressible Euler equation. We prove that finite-time-averages of solutions stay close to a subspace of longitude-independent zonal flows. The initial data are unprepared and can be arbitrarily far away from this subspace. Our analytical study justifies the global Coriolis effect in the spherical geometry as the underlying mechanism of this phenomenon. We use Riemannian geometric tools including the Hodge theory in the proofs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.