Abstract

The paper presents a method of solving the buckling problem of laced column as a statically indeterminate structure without analyzing determinants of high order. The flexural and torsional buckling problems of laced column are reduced to the two-point boundary value problem for a difference equation system. The value of Euler critical load is determined as a result of analyzing the fourth order determinant for column with any degree of static indeterminacy. The solution is based on the method of initial values. Stability of columns with any types of lattice (crosswise, serpentine, with batten struts); with any number of lattice panels and with variable lattice spacing can be examined by this manner. The analogy between the flexural and torsional buckling of the laced column is established. It enables one to use the same relations for consideration of both kinds of buckling. The obtained numerical results show that the Euler critical loads calculated by this method can be substantially differed from those based on the approximated Engesser's approach. A PC program for checking stability of laced column by designer can be developed on the basis of the present method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call