Abstract

We obtain a precise relation between the Chern–Schwartz–MacPherson class of a subvariety of projective space and the Euler characteristics of its general linear sections. In the case of a hypersurface, this leads to simple proofs of formulas of Dimca–Papadima and Huh for the degrees of the polar map of a homogeneous polynomial, extending these formula to any algebraically closed field of characteristic $$0$$ , and proving a conjecture of Dolgachev on ‘homaloidal’ polynomials in the same context. We generalize these formulas to subschemes of higher codimension in projective space. We also describe a simple approach to a theory of ‘polynomial Chern classes’ for varieties endowed with a morphism to projective space, recovering properties analogous to the Deligne–Grothendieck axioms from basic properties of the Euler characteristic. We prove that the polynomial Chern class defines homomorphisms from suitable relative Grothendieck rings of varieties to $$\mathbb{Z }[t]$$ .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.