Abstract
We prove that the sheaf Euler characteristic of the product of a Schubert class and an opposite Schubert class in the quantum K-theory ring of a (generalized) flag variety G/P is equal to $$q^d$$, where d is the smallest degree of a rational curve joining the two Schubert varieties. This implies that the sum of the structure constants of any product of Schubert classes is equal to 1. Along the way, we provide a description of the smallest degree d in terms of its projections to flag varieties defined by maximal parabolic subgroups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.