Abstract

We investigate the physics of an optically driven micromotor of biological origin. When a single, live red blood cell (RBC) is placed in an optical trap, the normal biconcave disc shape of the cell is observed to fold into a rod-like shape. If the trapping laser beam is circularly polarized, the folded RBC rotates. A model based on geometric considerations, using the concept of buckling instabilities, captures the folding phenomenon; the rotation of the cell is rationalized using the Poincaré sphere. Our model predicts that (i) at a critical power of the trapping laser beam the RBC shape undergoes large fluctuations, and (ii) the torque that is generated is proportional to the power of the laser beam. These predictions are verified experimentally. We suggest a possible mechanism for the emergence of birefringent properties in the RBC in the folded state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call