Abstract

Protein translation is a critical regulatory event involved in nearly all physiological and pathological processes. Eukaryotic translation initiation factors are dedicated to translation initiation, the most highly regulated stage of protein synthesis. Eukaryotic translation initiation factor 4G2 (eIF4G2, also called p97, NAT1 and DAP5), an eIF4G family member that lacks the binding sites for 5' cap binding protein eIF4E, is widely considered to be a key factor for internal ribosome entry sites (IRESs)-mediated cap-independent translation. However, recent findings demonstrate that eIF4G2 also supports many other translation initiation pathways. In this review, we summarize the role of eIF4G2 in a variety of cap-independent and -dependent translation initiation events. Additionally, we also update recent findings regarding the role of eIF4G2 in apoptosis, cell survival, cell differentiation and embryonic development. These studies reveal an emerging new picture of how eIF4G2 utilizes diverse translational mechanisms to regulate gene expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.