Abstract

Eukaryotic swimming cells such as spermatozoa, algae or protozoa use flagella or cilia to move in viscous fluids. The motion of their flexible appendages in the surrounding fluid induces propulsive forces that balance viscous drag on the cells and lead to a directed swimming motion. Here, we use our recently built database of cell motility (BOSO-Micro) to investigate the extent to which the shapes of eukaryotic swimming cells may be optimal from a hydrodynamic standpoint. We first examine the morphology of flexible flagella undergoing waving deformation and show that their amplitude-to-wavelength ratio is near that predicted theoretically to optimise the propulsive efficiency of active filaments. Next, we consider ciliates, for which locomotion is induced by the collective beating of short cilia covering their surface. We show that the aspect ratios of ciliates are close to that predicted to minimise the viscous drag of the cell body. Both results strongly suggest a key role played by hydrodynamic constraints, in particular viscous drag, in shaping eukaryotic swimming cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call