Abstract

The effects of eugenol on the sarcoplasmic reticulum (SR) and contractile apparatus of chemically skinned skeletal muscle fibers of the frog Rana catesbeiana were investigated. In saponin-skinned fibers, eugenol (5 mmol/L) induced muscle contractions, probably by releasing Ca(2+) from the SR. The Ca(2+)-induced Ca(2+) release blocker ruthenium red (10 micromol/L) inhibited both caffeine- and eugenol-induced muscle contractions. Ryanodine (200 micromol/L), a specific ryanodine receptor/Ca(2+) release channel blocker, promoted complete inhibition of the contractions induced by caffeine, but only partially blocked the contractions induced by eugenol. Heparin (2.5 mg/mL), an inositol 1,4,5-trisphosphate (InsP3) receptor blocker, strongly inhibited the contractions induced by eugenol but had only a small effect on the caffeine-induced contractions. Eugenol neither altered the Ca(2+) sensitivity nor the maximal force in Triton X-100 skinned muscle fibers. These data suggest that muscle contraction induced by eugenol involves at least 2 mechanisms of Ca(2+) release from the SR: one related to the activation of the ryanodine receptors and another through a heparin-sensitive pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.