Abstract
Eugenol, obtained from clove oil (Eugenia caryophyllata), possess several biological activities. It is anti-inflammatory, analgesic, anaesthesic, antipyretic, antiplatelet, anti-anaphylactic, anticonvulsant, anti-oxidant, antibacterial, antidepressant, antifungal and antiviral. The anti-oxidant activity of eugenol have already been proven. From this perspective testing, a series of planned structural derivatives of eugenol were screened to perform structural optimization and consequent increase of the potency of these biological activities. In an attempt to increase structural variability, 16 compounds were synthesized by acylation and alkylation of the phenolic hydroxyl group. Anti-oxidant activity capacity was based on the capture of DPPH radical (2,2-diphenyl-1-picryl-hydrazyl), ABTS radical 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), measure of TBARS (thiobarbituric acid-reactive species), total sulfhydryl and carbonyl content (eugenol derivatives final concentrations range from 50 to 200 μm). Four derivatives presented an efficient concentration to decrease 50% of the DPPH radical (EC50 ) < 100 μm, which has a good potential as a free-radical scavenger. Three of these compounds also showed reduction of ABTS radical. Eugenol derivatives presenting alkyl or aryl (alkylic or arylic) groups substituting hydroxyl 1 of eugenol were effective in reducing lipid peroxidation, protein oxidative damage by carbonyl formation and increase total thiol content in cerebral cortex homogenates. In liver, the eugenol derivatives evaluated had no effect. Our results suggest that these molecules are promising anti-oxidants agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.