Abstract

Eudistomin D (EuD) and penaresin (Pen) derivatives are bioactive alkaloids from marine sponges found to induce Ca(2+) release from striated muscle sarcoplasmic reticulum (SR). Although these alkaloids are believed to affect ryanodine receptor (RyR) gating in a "caffeine-like" manner, no single-channel study confirmed this assumption. Here, EuD and MBED (9-methyl-7-bromoeudistomin D) were contrasted against caffeine on their ability to modulate the SR Ca(2+) loading/leak from cardiac and skeletal muscle SR microsomes as well as the function of RyRs in planar bilayers. The effects of these alkaloids on [(3)H]ryanodine binding and SR Ca(2+) ATPase (SERCA) activity were also tested. MBED (1-5 μM) fully mimicked maximal activating effects of caffeine (20 mM) on SR Ca(2+) leak. At the single-channel level, MBED mimicked the agonistic action of caffeine on cardiac RyR gating (i.e., stabilized long openings characteristic of "high-open-probability" mode). EuD was a partial agonist at the maximal doses tested. The tested Pen derivatives displayed mild to no agonism on RyRs, SR Ca(2+) leak, or [(3)H]ryanodine binding studies. Unlike caffeine, EuD and some Pen derivatives significantly inhibited SERCA at concentrations required to modulate RyRs. Instead, MBED's affinity for RyRs (EC50 ∼ 0.5 μM) was much larger than for SERCA (IC50 > 285 μM). In conclusion, MBED is a potent RyR agonist and, potentially, a better choice than caffeine for microsomal and cell studies due to its reported lack of effects on adenosine receptors and phosphodiesterases. As a high-affinity caffeine-like probe, MBED could also help identify the caffeine-binding site in RyRs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.