Abstract

BackgroundEctoparasites from the family Diplozoidae (Platyhelminthes, Monogenea) belong to obligate haematophagous helminths of cyprinid fish. Current knowledge of these worms is for the most part limited to their morphological, phylogenetic, and population features. Information concerning the biochemical and molecular nature of physiological processes involved in host–parasite interaction, such as evasion of the immune system and its regulation, digestion of macromolecules, suppression of blood coagulation and inflammation, and effect on host tissue and physiology, is lacking. In this study, we report for the first time a comprehensive transcriptomic/secretome description of expressed genes and proteins secreted by the adult stage of Eudiplozoon nipponicum (Goto, 1891) Khotenovsky, 1985, an obligate sanguivorous monogenean which parasitises the gills of the common carp (Cyprinus carpio).ResultsRNA-seq raw reads (324,941 Roche 454 and 149,697,864 Illumina) were generated, de novo assembled, and filtered into 37,062 protein-coding transcripts. For 19,644 (53.0%) of them, we determined their sequential homologues. In silico functional analysis of E. nipponicum RNA-seq data revealed numerous transcripts, pathways, and GO terms responsible for immunomodulation (inhibitors of proteolytic enzymes, CD59-like proteins, fatty acid binding proteins), feeding (proteolytic enzymes cathepsins B, D, L1, and L3), and development (fructose 1,6-bisphosphatase, ferritin, and annexin). LC-MS/MS spectrometry analysis identified 721 proteins secreted by E. nipponicum with predominantly immunomodulatory and anti-inflammatory functions (peptidyl-prolyl cis-trans isomerase, homolog to SmKK7, tetraspanin) and ability to digest host macromolecules (cathepsins B, D, L1).ConclusionsIn this study, we integrated two high-throughput sequencing techniques, mass spectrometry analysis, and comprehensive bioinformatics approach in order to arrive at the first comprehensive description of monogenean transcriptome and secretome. Exploration of E. nipponicum transcriptome-related nucleotide sequences and translated and secreted proteins offer a better understanding of molecular biology and biochemistry of these, often neglected, organisms. It enabled us to report the essential physiological pathways and protein molecules involved in their interactions with the fish hosts.

Highlights

  • Ectoparasites from the family Diplozoidae (Platyhelminthes, Monogenea) belong to obligate haematophagous helminths of cyprinid fish

  • In this study, we integrated two high-throughput sequencing techniques, mass spectrometry analysis, and comprehensive bioinformatics approach in order to arrive at the first comprehensive description of monogenean transcriptome and secretome

  • Exploration of E. nipponicum transcriptome-related nucleotide sequences and translated and secreted proteins offer a better understanding of molecular biology and biochemistry of these, often neglected, organisms

Read more

Summary

Introduction

Ectoparasites from the family Diplozoidae (Platyhelminthes, Monogenea) belong to obligate haematophagous helminths of cyprinid fish. Current knowledge of these worms is for the most part limited to their morphological, phylogenetic, and population features. Despite the economic importance of this group of ectoparasites, there is a shortage of data on their functional molecular biology and interactions with their fish hosts. This research investigated, for instance, (a) polytypic parasites G. salaris [4], which infects salmon, and Gyrodactylus thymalli [5], which typically infect the grayling; (b) Neobenedenia melleni, a generalist parasite of marine fish [6]; (c) Benedenia hoshinai [7], a parasite of the striped knifejaw Oplegnathus fasciatus, and (d) Pseudochauhanea macrorchis [8], which typically infects the pickhandle barracuda Sphyraena jelloi

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.