Abstract

A skeletonization algorithm is presented, characterized by two main features: invariance under isometric transformations of the pattern, and recoverability. The algorithm is driven by the Euclidean distance map of the pattern. Invariance under isometric transformations is guaranteed due to the use of the Euclidean distance to compute the distance map; recoverability is guaranteed by the inclusion in the set of the skeletal pixels of the centres of the maximal discs. The skeletonization algorithm includes a beautifying step and a pruning step, which favour the use of the skeleton for shape analysis tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.