Abstract

Thurston's circle packing approximation of the Riemann Mapping (proven to give the Riemann Mapping in the limit by Rodin-Sullivan) is largely based on the theorem that any topological disk with a circle packing metric can be deformed into a circle packing metric in the disk with boundary cir- cles internally tangent to the circle. The main proofs of the uniformization use hyperbolic volumes (Andreev) or hyperbolic circle packings (by Beardon and Stephenson). We reformulate these problems into a Euclidean context, which allows more general discrete conformal structures and boundary condi- tions. The main idea is to replace the disk with a double covered disk with one side forced to be a circle and the other forced to have interior curvature zero. The entire problem is reduced to finding a zero curvature structure. We also show that these curvatures arise naturally as curvature measures on gen- eralized manifolds (manifolds with multiplicity) that extend the usual discrete Lipschitz-Killing curvatures on surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.