Abstract
<h3>Abstract</h3> Faulty signals from global navigation satellite systems (GNSSs) often lead to erroneous position estimates. A variety of fault detection and exclusion (FDE) methods have been proposed in prior research to both detect and exclude faulty measurements. This paper introduces a new technique for the FDE of GNSS measurements using Euclidean distance matrices. After a brief introduction to Euclidean distance matrices, both the detection and exclusion strategy is explained in detail. Euclidean distance matrix-based FDE is verified in two separate real-world data sets and proven to accurately detect and exclude GNSS faults on an average of 1.4-times faster than residual-based FDE and 70-times faster than solution separation FDE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: NAVIGATION: Journal of the Institute of Navigation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.