Abstract

In this paper we investigate the impact of lensing magnification on the analysis of spectroscopic survey using the multipoles of the two-point correlation function for galaxy clustering . We determine the impact of lensing magnification on cosmological constraints as well as the expected shift in the best-fit parameters if magnification is ignored . We considered two cosmological analyses: (i) a full-shape analysis based on the Lambda cold dark matter (CDM) model and its extension $ and (ii) a model-independent analysis that measures the growth rate of structure in each redshift bin. We adopted two complementary approaches in our forecast: the Fisher matrix formalism and the Markov chain Monte Carlo method. The fiducial values of the local count slope (or magnification bias), which regulates the amplitude of the lensing magnification, have been estimated from the Flagship simulations. We used linear perturbation theory and modelled the two-point correlation function with the public code . For a Lambda CDM model, we find that the estimation of cosmological parameters is biased at the level of 0.4--0.7 standard deviations, while for a $ dynamical dark energy model, lensing magnification has a somewhat smaller impact, with shifts below 0.5 standard deviations. For a model-independent analysis aimed at measuring the growth rate of structure, we find that the estimation of the growth rate is biased by up to $1.2$ standard deviations in the highest redshift bin. As a result, lensing magnification cannot be neglected in the spectroscopic survey, especially if we want to determine the growth factor, one of the most promising ways to test general relativity with We also find that, by including lensing magnification with a simple template, this shift can be almost entirely eliminated with minimal computational overhead

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call