Abstract

In this paper we describe the thermal architecture of the Near Infrared Spectro-Photometer (NISP) on board the Euclid ESA mission. The instrument thermal design is based on the combination of two passive radiators coupled to cold space that, exploiting the beneficial conditions of the L2 thermal environment, provide the temperature references for the main sub-systems. One radiator serves as a 135K heat sink for the opto-mechanical structure and for the front-end cold electronics, while working as an interception stage for the conductive parasitic heat leaks through struts and harness. The second, colder, radiator provides a 95K reference for the instrument detectors. The thermal configuration has to ensure the units optimal operating temperature needed to maximize instrument performance, adopting solutions consistent with the mechanical specifications. At the same time the design has to be compliant with the stringent requirements on thermal stability of the optical and detector units. The periodical perturbation of filter and grism wheel mechanisms together with orbital variations and active loads instabilities make the temperature control one of the most critical issues of the whole design. We report here the general thermal architecture at the end of the Definition Phase, together with the first analysis results and preliminary performance predictions in terms of steady state and transient behavior. This paper is presented on behalf of the Euclid Consortium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.