Abstract

ABSTRACT We infer the expected detection number of pair instability supernovae (PISNe) during the operation of the Euclid space telescope based on binary population models. Our models reproduce the global maximum at the primary BH mass of ∼9–10 M⊙ and the overall gradient of the primary BH mass distribution in the binary BH merger rate consistent with recent observations. We consider different PISN conditions depending on the 12C(α, γ)16O reaction rate. The fiducial and 3σ models adopt the standard and 3σ smaller reaction rates, respectively. Our fiducial model predicts that Euclid detects several hydrogen-poor PISNe. For the 3σ model, detection of ∼1 hydrogen-poor PISN by Euclid is expected if the stellar mass distribution extends to Mmax = 600 M⊙, but the expected number becomes significantly smaller if Mmax = 300 M⊙. We may be able to distinguish the fiducial and 3σ models by the observed PISN rate. This will help us to constrain the origin of binary BHs and the reaction rate, although there remains a degeneracy between Mmax and the reaction rate. PISN ejecta mass estimates from light curves and spectra obtained by follow-up observations would be important to disentangle the degeneracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call