Abstract

Eu3+-activated CdY4MoO16 nanoparticles were synthesized via the sol-gel method. The phase formations were confirmed by the structural refinements. The photoluminescence properties such as the excitation and emission spectra, optimal doping level, internal absolute quantum efficiency (QE), decay lifetimes and the thermal stability, were measured. The charge transfer band (CTB) has a dependence on the Eu3+-content, showing an obvious red-shift with the increase of doping levels. Especially, CTB could reach a longer wavelength than the reported Eu3+-doped molydates. Moreover, the phosphor has some priorities such as high quantum efficiency, high doping levels and good thermal stability, etc. The excellent luminescence of Eu3+-activated CdY4MoO16 was discussed on its structural characteristics such as the cubic fluorite-like crystalline phase, framework constructed by Mo-O polyhedral groups, and the positive charge deficiency in the Eu3+-occupied cation sites of (Cd0.5, Y0.5)2.5 in the lattices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call