Abstract

Smart luminescent materials that have the ability to reversibly adapt to external environmental stimuli and possess a wide range of responses are continually emerging, which place higher demands on the means of regulation and response sites. Here, europium ions (Eu3+ )-directed supramolecular metallogels are constructed by orthogonal self-assembly of Eu3+ based coordination interactions and hydrogen bonding. A new organic ligand (L) is synthesized, consisting of crown ethers and two flexible amide bonds-linked 1,10-phenanthroline moieties to coordinate with Eu3+ . Synergistic intermolecular hydrogen bonding in L and Eu3+ -L coordination bonding enable Eu3+ and L to self-assemble into shape-persistent 3D coordination metallogels in MeOH solution. The key to success is the utilization of crown ethers, playing dual roles of acting both as building blocks to build L with C2 -symmetrical structure, and as the ideal monomer for increasing the energy transfer from L to Eu3+ 's excited state, thus maintaining the excellent luminescence of metallogels. Interestingly, such assemblies show K+ , pH, F- , and mechano-induced reversible gel-sol transitions and tunable luminescence properties. Above findings are useful in the studies of molecular switches, dynamic assemblies, and smart luminescent materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call