Abstract

AbstractMetal chalcogenophosphates are receiving increasing interest, specifically as promising infrared nonlinear optical (NLO) candidates. Here, a rare‐earth chalcogenophosphate Eu2P2S6 crystallizing in the monoclinic noncentrosymmetric space group Pn was synthesized using a high‐temperature solid‐state method. Its structure features isolated [P2S6]4− dimer, and two types of EuS8 bicapped triangular prisms. Eu2P2S6 exhibits a phase‐matchable second‐harmonic generation (SHG) response ≈0.9×AgGaS2@2.1 μm, and high laser‐induced damage threshold of 3.4×AgGaS2, representing the first rare‐earth NLO chalcogenophosphate. The theoretical calculation result suggests that the SHG response is ascribed to the synergetic contribution of [P2S6]4− dimers and EuS8 bicapped triangular prisms. This work provides not only a promising high‐performance infrared NLO material, but also opens the avenue for exploring rare‐earth chalcogenophosphates as potential IR NLO materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.