Abstract

Incorporation of Eu complexes into various organic or inorganic matrixes is one of the acceptable strategies to obtain displaying materials having practical applications. In this work, we report a convenient approach to preparing high luminescent organic-inorganic hybrid materials and films from the europium-titanium oxo-clusters (EuTOCs) having photoactive antenna ligands. Three Eu2Ti4 oxo-clusters were synthesized and crystallographically characterized. They are the first reported lanthanide-TOCs coordinated with 1,10-phenanthroline (phen) and 2,2'-bipyridine (bpy) as photoactive ligands, Eu2Ti4O6(phen)2(pa)10 (1) (pa = propionate), Eu2Ti4O6(bpy)2(pa)10 (2), and Eu2Ti4O6(phen)2(MA)10 (3) (MA = methacrylate). Benefitting from the photoactive antenna ligands and the rigid cluster structures, these clusters showed bright red luminescence with quantum yield in the range of 60-80% and long lifetime up to 3.0 ms. Unlike those physically mixed polymeric materials, the MA coordinated compound 3 can be self-polymerized to form a brilliant luminescent film. The film coated slide was used to develop a fluorescence sensor for biomolecule ascorbic acid (AA). The low detection limit and reusable properties suggest great potential for such EuTOC films in real applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call