Abstract

The problem of Eu incorporation into silica as dispersed dopants, clusters, separate-phase nanoparticles, or nanocrystals, which is of key importance for applications in the fields of lasers and scintillators, is faced by applying to sol–gel silica doped with nine different Eu3+ concentrations (0.001–10 mol % range) various spectroscopic techniques, including crystal field and vibrational mode analysis by means of Fourier transform absorption and microreflectivity (in the 200–6000 cm–1 and 9–300 K ranges), radioluminescence, and Raman scattering studies at 300 K. The variety of methods revealed the following concordant results: (1) amorphous Eu clusters grow when the Eu concentration is increased up to 3 mol % and (2) Si–OH groups are completely removed and ordered phase separation occurs at 10 mol % doping, as suggested by the remarkable narrowing of the spectral lines. Comparison with polycrystalline Eu oxide, Eu silicates, and α-quartz spectra allowed the unequivocal identification of Eu2Si2O7 pyrosili...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.