Abstract

Objectives: Macrophages play a critical role in atherosclerosis by contributing to plaque development, local inflammation, and thrombosis. Elucidation of the molecular cascades in atherosclerotic macrophages is important for preventing and treating atherosclerosis. This study aims to deepen the understanding of the mechanisms that regulate the function of aorta macrophage in atherosclerosis. Methods: In the current study, the expression and function of ETS variant transcription factor 6 (ETV6) in aorta macrophages in a mouse atherosclerosis model. Aorta macrophages were enriched by flow cytometry. ETV6 expression was analyzed by quantitative RT-PCR. The role of ETV6 in macrophage-mediated pro-inflammatory response was evaluated both in vitro and in vivo after ETV6 silencing. Results: A remarkable elevation of ETV6 in aorta macrophages of atherosclerotic mice was observed. In addition, in vitro analysis indicated that oxidized low-density lipoprotein (oxLDL) up-regulated ETV6 in macrophages via the NF-κB pathway. ETV6 silencing suppressed oxLDL-induced expression of IL-1β, IL-6, and TNF-α in macrophages in vitro. However, ETV6 silencing did not impact the uptake of either oxLDL or cholesterol by macrophages. Furthermore, ETV6 silencing suppressed oxLDL-induced activation of the NF-κB pathway in macrophages, as evidenced by less phosphorylation of IKKβ and NF-κB p65, more cytoplasmic IκBα, and lower nuclear NF-κB p65. Moreover, ETV6 silencing inhibited the production of IL-1β and TNF-α in aorta macrophages in vivo. Conclusion: ETV6 supports macrophage-mediated inflammation in atherosclerotic aortas. This is a novel mechanism regulating the pro-inflammatory activity of atherosclerotic macrophages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.