Abstract

Previous studies with the multidrug-resistant human HL60 cell line have shown a 3–4-fold decrease in VP-16 accumulation compared to the sensitive cell line, while the degree of resistance to VP-16 was 300-fold, indicating that other mechanisms of resistance are also operative. Since VP-16 has been shown to interfere with topoisomerase II activity, we have evaluated VP-16-dependent DNA strand break formation in the drug-sensitive and -resistant HL60 cells. Studies reported here show that the drug-resistant HL60 cells are extremely resistant to VP-16-dependent DNA cleavage compared to the sensitive cells. This decrease in DNA cleavage in the of VP-16 was, in part, related to a 2–3-fold decrease in both the amount and activity of topisomerase II in the resistant cell line compared to the sensitive cells. Nuclei from the resistant cell line were markedly more resistant to VP-16-dependent DNA cleavage than the WT cell nuclei. Interestingly, WT nuclei were found to be relatively more resistant to VP-16-induced DNA cleavage than the intact WT cells. Addition of WT cytosolic proteins to WT nuclei, however, significantly stimulated VP-16-dependent DNA cleavage and slightly increased DNA cleavage in resistant cell nuclei. In contrast, cytosolic proteins from the resistant cells had no effect on DNA cleavage in nuclei isolated from either cell line. These observations indicate that a decrease in the amount and activity of topoisomerase II in resistant HL60 cells translates into a decrease in VP-16-dependent DNA breakage and contributes to the resistance to VP-16. Furthermore, the cytosolic fraction from WT cells contains some factor, not present in the resistant cells, which is necessary for the maximal drug-induced DNA cleavage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.