Abstract

Central GABAA receptors mediate GABAergic phasic and tonic inhibition. While synaptic αβγ GABAA receptors primarily mediate phasic inhibition, extrasynaptic αβδ receptors play an important role in mediating tonic inhibition. Etomidate is a general anesthetic that produces its effects by enhancing GABAA receptor activity. We previously showed that etomidate modulates the gating of oocyte-expressed αβγ and αβδ receptors with similar overall allosteric impact, but different pharmacological patterns. In αβγ receptors, etomidate enhances apparent GABA sensitivity (reduces GABA EC50), modestly increases maximal GABA efficacy, and slows current deactivation without affecting desensitization (Zhong et al., 2008). In αβδ receptors characterized by low GABA efficacy, etomidate dramatically increases responses to both low and maximal GABA. The effects of etomidate on desensitization and deactivation of αβδ receptors are unknown. To investigate the kinetic effects of etomidate on α1β3δ receptors of defined subunit arrangement, we expressed concatenated trimer (β3-α1-δ) and dimer (β3-α1) GABAA receptor subunit assemblies in human embryonic kidney (HEK)293T cells and recorded whole-cell voltage-clamp currents during rapid external solution exchanges. As expected, etomidate substantially increased maximal GABA-induced currents and prolonged deactivation. Moreover, desensitization was significantly decreased by etomidate. During prolonged GABA applications, etomidate enhanced steady-state currents more than peak currents. Thus, etomidate enhances tonic GABAergic inhibition through extrasynaptic αβδ receptors by both augmenting gating and reducing desensitization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.