Abstract

Neural Architecture Search (NAS) is crucial in the field of sustainable computing as it facilitates the development of highly efficient and effective neural networks. However, it cannot automate the deployment of neural networks to accommodate specific hardware resources and task requirements. This paper introduces ETNAS, which is a hardware-aware multi-objective optimal neural network architecture search algorithm based on the differentiable neural network architecture search method (DARTS). The algorithm searches for a lower-power neural network architecture with guaranteed inference accuracy by modifying the loss function of the differentiable neural network architecture search. We modify the dense network in DARTS to simultaneously search for networks with a lower memory footprint, enabling them to run on memory-constrained edge-end devices. We collected data on the power consumption and time consumption of numerous common operators on FPGA and Domain-Specific Architectures (DSA). The experimental results demonstrate that ETNAS achieves comparable accuracy performance and time efficiency while consuming less power compared to state-of-the-art algorithms, thereby validating its effectiveness in practical applications and contributing to the reduction of carbon emissions in intelligent cyber–physical systems (ICPS) edge computing inference.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.