Abstract

Embryonal tumors with multilayered rosettes (ETMR) are deadly brain malignancies affecting young children. No standard treatment is available and the median survival is less than 12 months. Molecularly, the disease is characterized by the miRNA C19MC cluster amplification, with the expression of multiples miRNAs related to a stem cell program. The discoveries on the purely molecular mechanisms of the disease did not help to create a bridge for new treatment strategies so far and the cellular diversity of ETMR remains poorly understood. In this study, we used single-cell RNA sequencing of murine and human tumors to describe ETMR cellular heterogeneity. Our findings support that intra-tumoral heterogeneity is mainly characterized by 4 cellular programs defining a developmental hierarchy related to different metabolic states: 1) Early quiescent NSC-like cells supported by fatty-acid oxidation 2) Late NSC and NP-like proliferative cells fueled by glycolytic metabolism; 3) Post-mitotic neuroblast-like cells, relying on oxidative-phosphorylation; 4) NSC-like proliferative cells, with metabolic plasticity and capable of performing the three types of metabolism. Tumor-specific ligand-receptor interaction analysis revealed that ETMR exchange with microglia and vascular mural cells (MC) signals related to extracellular matrix (ECM) organization (Cxcl12-CxCr4), stem cell signaling (BMPs-BMP receptors), anti-apoptosis and survival (Ntf3-Ntrk), not seen in the control brain. In addition, the vascular MC showed a cancer-associated fibroblast (CAF) phenotype, with potential prognostic implications, as previously demonstrated for other tumors. This study provides new findings to build up a more robust understanding of ETMR biology and opens space for further studies in the field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.