Abstract
For every semi-simple Lie algebra g one can construct the Drinfeld–Jimbo algebra U h DJ ( g ) . This algebra is a deformation Hopf algebra defined by generators and relations. To study the representation theory of U h DJ ( g ) , Drinfeld used the KZ-equations to construct a quasi-Hopf algebra A g . He proved that particular categories of modules over the algebras U h DJ ( g ) and A g are tensor equivalent. Analogous constructions of the algebras U h DJ ( g ) and A g exist in the case when g is a Lie superalgebra of type A-G. However, Drinfeld's proof of the above equivalence of categories does not generalize to Lie superalgebras. In this paper, we will discuss an alternate proof for Lie superalgebras of type A-G. Our proof utilizes the Etingof–Kazhdan quantization of Lie (super)bialgebras. It should be mentioned that the above equivalence is very useful. For example, it has been used in knot theory to relate quantum group invariants and the Kontsevich integral.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.