Abstract

Nerve regeneration and functional recovery are major issues following nerve tissue damage. Etifoxine is currently under investigation as a therapeutic strategy for promoting neuroprotection, accelerating axonal regeneration and modulating inflammation. In the present study, a well‑defined PC12 cell model was used to explore the underlying mechanism of etifoxine‑stimulated neurite outgrowth. Etifoxine was found to promote glial‑derived growth factor (GDNF)‑induced neurite outgrowth in PC12 cells. Average axon length increased from 50.29±9.73 to 22.46±5.62 µm with the use of etifoxine. However, blockage of GDNF downstream signaling was found to lead to the loss of this phenomenon. The average axon length of the etifoxine group reduces to a normal level after the blockage of the GDNF family receptor α1 (GFRα1) and receptor tyrosine kinase (RETS) receptors (27.46±3.59 vs. 22.46±5.62 µm and 25.31±3.68 µm vs. 22.46±5.62 µm, respectively, p>0.05). In addition, etifoxine markedly increased GDNF mRNA and protein expression (1.55‑ and 1.36-fold, respectively). However, blockage was not found to downregulate GDNF expression. The results of the current study demonstrated that etifoxine stimulated neurite outgrowth via GDNF, indicating that GDNF represents a key molecule in etifoxine‑stimulated neurite outgrowth in PC12 cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.