Abstract

Auxin-induced ethylene formation in etiolated pea (Pisum sativum L. var. Alaska) stem segments was inhibited by inhibitors of RNA and protein synthesis. Kinetics of the inhibitions is described for actinomycin D, cordycepin, alpha-amanitin, and cycloheximide. alpha-Amanitin was the most potent and fast-acting inhibitor, when added before induction or 6 hours after induction of the ethylene-forming system. The ethylene-forming system of postclimacteric apple (Malus sylvestris L.) tissue, which is already massively induced, was not further stimulated by auxin. Ethylene production in apples was inhibited least by alpha-amanitin and most by actinomycin D. The relative responses of the ethylene system in apples to RNA inhibitors were different from the ethylene system of pea stems. However, the protein synthesis inhibitor, cycloheximide, appeared to act equally in both tissue systems. The effect of cycloheximide on ethylene production in postclimacteric apple tissue, already producing large quantities of ethylene, suggests a dynamic regulating system for the synthesis and degradation of the ethylene-forming system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.