Abstract

Amine termination of surfaces constitutes a core platform for fields as diverse as microelectronics and bioengineering, and for nanotechnology in general. Diamines are particularly attractive for surface amination because unlike ammonia or simple amine molecules, they have a metal chelating capability useful in fabricating heterostructures. They can act as a linker molecule between inorganic electronic materials and biomolecules or photoactive quantum dots for applications in microelectronic, photonics, and biosensing. In contrast to ammonia modification of silicon surfaces, the direct grafting of diamine on silicon surfaces has been less explored. In this work, the attachment of liquid and vapor-phase ethylenediamine (EDA) on three types of oxide-free (H-, 1/3 ML F-, and Cl-terminated) Si(111) surfaces is therefore examined by infrared absorption spectroscopy and X-ray photoelectron spectroscopy in conjunction with first-principle calculations. We find that EDA chemisorption is only possible on 1/3 ML F-...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call