Abstract
The effects of ethylene on cell division are generally considered inhibitory. In this study, we demonstrate that transient ethylene exposure, while suppressing cytokinesis, stimulates DNA synthesis. We monitored DNA synthesis and cytokinesis in the epidermis of cucumber (Cucumis sativus) hypocotyls, an organ whose post-germination development involves strictly limited cell division. During exposure to ethylene, DNA synthesis, assessed by the incorporation of the thymidine homolog 5-bromo-2'-deoxyuridine, was detected in 20% of the epidermal cells, whereas DNA synthesis was nearly undetectable in normal air. Cytofluorometric analysis of nuclei in affected cells showed an up to 8-fold increase in DNA content. During this time, new cell plate formation was not detected. However, shortly after ethylene was removed, DNA content was rapidly restored to 2C (diploid) levels in all cells, and new cell plate formation dramatically increased. These results demonstrate that ethylene promotes DNA synthesis and its endoreduplication but inhibits cytokinesis, thereby maintaining some cells in G2 phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.