Abstract

In the dark, etiolated seedlings display a long hypocotyl, the growth of which is rapidly inhibited when the seedlings are exposed to light. In contrast, the phytohormone ethylene prevents hypocotyl elongation in the dark but enhances its growth in the light. However, the mechanism by which light and ethylene signalling oppositely affect this process at the protein level is unclear. Here, we report that ethylene enhances the movement of CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1) to the nucleus where it mediates the degradation of LONG HYPOCOTYL 5 (HY5), contributing to hypocotyl growth in the light. Our results indicate that HY5 is required for ethylene-promoted hypocotyl growth in the light, but not in the dark. Using genetic and biochemical analyses, we found that HY5 functions downstream of ETHYLENE INSENSITIVE 3 (EIN3) for ethylene-promoted hypocotyl growth. Furthermore, the upstream regulation of HY5 stability by ethylene is COP1-dependent, and COP1 is genetically located downstream of EIN3, indicating that the COP1-HY5 complex integrates light and ethylene signalling downstream of EIN3. Importantly, the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) enriched the nuclear localisation of COP1; however, this effect was dependent on EIN3 only in the presence of light, strongly suggesting that ethylene promotes the effects of light on the movement of COP1 from the cytoplasm to the nucleus. Thus, our investigation demonstrates that the COP1-HY5 complex is a novel integrator that plays an essential role in ethylene-promoted hypocotyl growth in the light.

Highlights

  • The phytohormone ethylene plays significant roles in many developmental processes and stress responses in plants

  • We demonstrate that ethylene enhances the movement of CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1) to the nucleus where it promotes the degradation of LONG HYPOCOTYL 5 (HY5) in the light, contributing to hypocotyl growth

  • Using genetic and biochemical analyses, we found that HY5 functions downstream of ETHYLENE INSENSITIVE 3 (EIN3) during ethylene-promoted hypocotyl growth

Read more

Summary

Introduction

The phytohormone ethylene plays significant roles in many developmental processes and stress responses in plants. Molecular and genetic analyses have revealed a linear signalling pathway, which is initiated by ethylene perception at the endoplasmic reticulum membrane, resulting in transcriptional regulation in the nucleus [1,2,3]. In the absence of ethylene, these receptors directly suppress the ethylene response by interacting with a Raf-like mitogen-activated protein kinase kinase kinase family protein, CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1) [6,7,8]. This negative regulator interacts with and directly phosphorylates the cytosolic C-terminal domain of EIN2 in Arabidopsis [9]. EIN3 further activates the expression of ethyleneresponsive genes in different physiological processes [15,16,17,18,19,20,21]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call