Abstract

Bronzing, a nutritional disorder of rice plants which is widely distributed in tropical lowlands, was induced by dipping the cut end of rice leaves into FeSO4 solution (pH 3.5). Ethylene production; the activities of peroxidase, polyphenol oxidase, and phenylalanine ammonia-lyase; and the effects of Co2+, aminoethoxyvinylglycine, Ag+, cycloheximide, and 1-aminocyclopropane-1-carboxylate, were investigated in the course of bronzing development. It was found that ethylene production could be stimulated up to about 20 times that of the control by Fe2+, and a peak could be reached at about 24 h after incubation. The Fe2+-treated leaves also had 10-fold higher peroxidase activity than the control, whereas in vitro enzyme activity was inhibited by Fe2+. Cycloheximide retarded in vivo stimulation of peroxidase, indicating that in vivo stimulation resulted from inducing de novo synthesis of the enzyme. No changes in the activities of phenylalanine ammonia-lyase and polyphenol oxidase were observed. The results, obtained from the incubation of leaves with Co2+, aminoethoxyvinylglycine, Ag+, cycloheximide, or 1-aminocyclopropane-1-carboxylate, showed that ethylene production was the effect of Fe2+ stress and that it was not involved in the process of bronzing development, which is probably an acclimation process to enable plants to cope with stress. The accelerated peroxidase activity may be associated with bronzing development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.