Abstract

We demonstrate a method for high-throughput catalyst screening using a parallel pressure reactor starting from the initial synthesis of a nickel α-diimine ethylene polymerization catalyst. Initial polymerizations with the catalyst lead to optimized reaction conditions, including catalyst concentration, ethylene pressure and reaction time. Using gas-uptake data for these reactions, a procedure to calculate the initial rate of propagation (kp) is presented. Using the optimized conditions, the ability of the nickel α-diimine polymerization catalyst to undergo chain transfer with diethylzinc (ZnEt2) during ethylene polymerization was investigated. A procedure to assess the ability of the catalyst to undergo chain transfer (from molecular weight and 13C NMR data), calculate the degree of chain transfer, and calculate chain transfer rates (ke) is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.