Abstract

AbstractThe data on the effects of polymerization duration, cocatalyst, and monomer concentrations upon ethylene polymerization in the absence of hydrogen, and the effect of an additional chain transfer agent (hydrogen) on the molecular weight (MW), molecular weight distribution (MWD), and content of vinyl terminal groups for polyethylene (PE) produced over the supported titanium‐magnesium catalyst (TMC) are obtained. The effects of these parameters on nonuniformity of active sites for different chain transfer reactions are analyzed by deconvolution of the experimental MWD curves into Flory components. It has been shown that the polymer MW grows, the MWD becomes narrower and the content of vinyl terminal groups in PE increases with increasing polymerization duration. It is assumed to occur due to the reduction of the rate of chain transfer with AlEt3 with increasing polymerization duration. The polydispersity of PE is found to rise with increasing AlEt3 concentration and decreasing monomer concentration due to the emergence of additional low molecular weight Flory components. The ratios of the individual rate constants of chain transfer with AlEt3, monomer and hydrogen to the propagation rate constant have been calculated. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.