Abstract
Metallocene immobilization onto a solid support helps to overcome the drawbacks of homogeneous metallocene complexes in the catalytic olefin polymerization. In this study, valuable insights have been obtained into the effects of pore size, linker composition, and surface groups of metal-organic frameworks (MOFs) on their role as support materials for metallocene-based ethylene polymerization catalysis. Three distinct Zn-based metal-organic frameworks (MOFs), namely, MOF-5, IRMOF-3, and ZIF-8, with different linkers have been activated with methylaluminoxane (MAO) and zirconocene complexes, followed by materials characterization and testing for ethylene polymerization. Characterization has been performed by multiple analytical tools, including X-ray diffraction (XRD), scanning electron microscopy (SEM), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and CO Fourier transform infrared (FT-IR) spectroscopy. It was found that the interactions between MOFs, MAO, and the zirconocene complex not only lead to both catalyst activation and deactivation but also result in the creation of multiple active sites. By alteration of the MOF support, it is possible to obtain polyethylene with different properties. Notably, ultrahigh molecular weight polyethylene (UHMWPE, M W = 5.34 × 106) was obtained using IRMOF-3 as support. This study reveals the potential of MOF materials as tunable porous supports for metallocene catalysts active in ethylene polymerization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.