Abstract
Abstract The ethylene methyl acrylate copolymer (EMA), for the first time, was melt blended with poly(lactic acid) (PLA) by a twin-screw extruder to toughen PLA. The phase morphologies, mechanical, and rheological properties of the PLA/EMA blends with six weight ratios were investigated. The results showed that the addition of EMA improves the toughness of PLA at the expense of the tensile strength, flexural strength and modulus to a certain degree, and results in the transition from brittle fracture of PLA into ductile fracture. The droplet-matrix morphology is observed in the PLA/EMA blends, in which the mean diameter of EMA droplets increases and its distribution widens gradually with increasing the EMA content. The PLA/EMA blends with three weight ratios (90/10, 80/20, and 70/30) display different characteristic linear viscoelastic properties in the low frequency region, which were investigated in terms of their complex viscosity, storage modulus, and Cole-Cole plots. The interfacial tension between the PLA and EMA is calculated using the Palierne model conducted on the 80/20 PLA/EMA blend, and the calculated result is 3.3 mN/m.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.