Abstract

Reproductive development is a critical determinant of agricultural yield. For species with unisexual flowers, floral secualdifferentation adds additional complexity, that can influenec productivity. The hormone ethylene has long, been known to play a primary role in sex determination in the Cucumis species cucumber (C. sativus) and melon (C. melo). Our objectives were to: (1) Determine critical sites of ethylene production and perception for sex determination; (2) Identify additional ethylene related genes associated with sex expression; and (3) Examine the role of environment ami prior fruit set on sex expression, pistillate flower maturation, and fruit set. We made progress in each of these areas. (1) Transgenic melon produced with the Arabidopsis dominant negative ethylene perception mutant gene, etrl-1, under the control of floral primordia targeted promoters [AP3 (petal and stamen) and CRC (carpel and nectary)], showed that ethylene perception by the stamen primordia, rather than carpel primordia, is critical for carpel development at the time of sex determination. Transgenic melons also were produced with the ethylene production enzyme gene. ACS, encoding l-aminocyclopropane-lcarboylate synthase, fused to the AP3 or CRC promoters. Consistent with the etr1-1 results, CRC::ACS did not increase femaleness; however, AP3::ACS reduced or eliminated male flower production. The effects of AP3:ACS were stronger than those of 35S::ACS plants, demonstratin g the importance of targeted expression, while avoiding disadvantages of constitutive ethylene production. (2) Linkage analysis coupled with SNP discovery was per formed on ethylene and floral development genes in cucumber populations segregating for the three major sex genes. A break-through towards cloning the cucumber M gene occurred when the melon andromonoecious gene (a), an ACS gene, was cloned in 2008. Both cucumber M and melon a suppress stamen development in pistillate flowers. We hypothesized that cucumber M could be orthologous to melon a, and found that mutations in CsACS2 co-segregated perfectly with the M gene. We also sought to identify miRNA molecules associated with sex determination. miRNA159, whose target in Arabidopsis is GAMYB[a transcription factor gene mediating response to10 gibberellin (GA)], was more highly expressed in young female buds than male. Since GA promotes maleness in cucumber, a micro RNA that counteracts GAMYB could promote femaleness. miRNA157, which in other plants targets transcription factors involved in flower development , was expressed in young male buds and mature flower anthers. (3) Gene expression profiling showed that ethylene-, senescence-, stress- and ubiquitin-related genes were up-regulated in senescing and inhibited fruits, while those undergoing successful fruit set up-regulated photosynthesis, respiration and metabolic genes. Melon plants can change sex expression in response to environmental conditions, leading to changes in yield potential. Unique melon lines with varying sex expression were developed and evaluated in the field in Hancock, Wisconsin . Environmental changes during the growing season influenced sex expression in highly inbred melon lines. Collectively these results are of significance for understanding regulation of sex expression. The fact that both cucumber sex loci identified so far (F and M) encode isoforms of the same ethylene synthesis enzyme, underscores the importance of ethylene as the main sex determining hormone in cucumber. The targeting studies give insight into developmental switch points and suggest a means to develop lines with earlier carpel-bearing flower production and fruit set. These results are of significance for understanding regulation of sex expression to facilitate shorter growing seasons and earlier time to market. Field results provide information for development of management strategies for commercial production of melon cultivars with different sex expression characteristics during fruit production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.