Abstract

In this study, we evaluated the photosynthetic performance of Zanthoxylum armatum seedlings to test the tolerance to reoxygenation after waterlogging. The experiment included a control group without waterlogging (NW) and three reoxygenation groups with reoxygenation after 1day (WR1), 2days (WR2) and 3days (WR3). Seedlings were pretreated with concentrations of 0, 200 and 400μmolL-1 of ethylene. The results showed that reoxygenation after waterlogging for 1-3days decreased photosynthetic pigments content, enzymes activity, stomatal conductance (G s ), net photosynthetic rate (P n ), transpiration rate (T r ) and water-use efficiency (WUE). However, pretreatment with ethylene increased photosynthetic pigments content, enzymes activity and gas exchange parameters under both NW and WR3 treatments. The chlorophyll fluorescence results showed that the maximum quantum yield of PSII (F v /F m ) and actual photochemical efficiency of PSII (Φ PSII ) remained no significant changes under the NW and WR1 treatments, while they were significantly reduced with an increase in waterlogging days followed by reoxygenation under WR2 and WR3 treatments. Exogenous ethylene inhibited F v /F m and the non-photochemical quenching coefficient (NPQ), while enhanced Φ PSII and electron transfer efficiency (ETR) under WR2 treatments. Moreover, the accumulation of exogenous ethylene reduced photosynthetic ability. These findings provide insights into the role of ethylene in enhancing the tolerance of Z. armatum to reoxygenation stress, which could help mitigate the impact of continued climate change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.