Abstract

Cold stress has always been a major abiotic factor affecting the yield and quality of temperate fruit crops. Ethylene plays a critical regulatory role in the cold stress response, but the underlying molecular mechanisms remain elusive. Here, we revealed that ethylene positively modulates apple responses to cold stress. Treatment with 1-aminocyclopropane-1-carboxylate (an ethylene precursor) and aminoethoxyvinylglycine (an ethylene biosynthesis inhibitor) respectively increased and decreased the cold tolerance of apple seedlings. Consistent with the positive effects of ethylene on cold stress responses, a low-temperature treatment rapidly induced ethylene release and the expression of MdERF1B, which encodes an ethylene signaling activator, in apple seedlings. Overexpression of MdERF1B significantly increased the cold tolerance of apple plant materials (seedlings and calli) and Arabidopsis thaliana seedlings. A quantitative real-time PCR analysis indicated that MdERF1B upregulates the expression of the cold-responsive gene MdCBF1 in apple seedlings. Moreover, MdCIbHLH1, which functions upstream of CBF-dependent pathways, enhanced the binding of MdERF1B to target gene promoters as well as the consequent transcriptional activation. The stability of MdERF1B-MdCIbHLH1 was affected by cold stress and ethylene. Furthermore, MdERF1B interacted with the promoters of two genes critical for ethylene biosynthesis, MdACO1 and MdERF3. The resulting upregulated expression of these genes promoted ethylene production. However, the downregulated MdCIbHLH1 expression in MdERF1B-overexpressing apple calli significantly inhibited ethylene production. These findings imply that MdERF1B-MdCIbHLH1 is a potential regulatory module that integrates the cold and ethylene signaling pathways in apple.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.