Abstract

AbstractAbstract In seed formation the role of ethylene has received little attention. The data available on zygotic embryogenesis suggest an association of the ethylene biosynthetic pathway and seed maturation. Over the course of dicot embryogenesis, ACC-oxidase mRNA can be expressed in the cotyledons and embryonic axis. However, as maturation proceeds, cotyledonary ACC-oxidase expression disappears. In some seeds that develop primary dormancy, ethylene synthesis can be among the prerequisites for breaking dormancy. Moreover, the persistence of dormancy may be related to the difficulty of the embryonic axis to produce the necessary ethylene levels or to low tissue sensitivity. The use of inhibitors of ethylene biosynthesis or its action has provided data implicating an ethylene requirement for seed dormancy or germination in some species. However, the role of ethylene in germination remains controversial. Some authors hold that gas production is a consequence of the germination process, while others contend that ethylene production is a requirement for germination. Furthermore, among seeds that require ethylene, some are extremely sensitive to the gas, while others require relatively high levels to trigger germination. Recent studies withXanthium pennsylvanicumseeds suggest that β-cyanoalanine-synthase is involved in ethylene-dependent germination. In addition, regulation of the partitioning ofS-adenosyl-L-methionine (AdoMet) between the ethylene vs polyamine biosynthetic pathways may be a way of controlling germination in some seeds. Such regulation may also apply to the reversal of seed thermoinhibition, which can occur when polyamine synthesis is inhibited, thereby strongly channelling AdoMet towards ethylene. The biological models and approaches that may shed additional light on the role of ethylene during seed germination are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call