Abstract

Studies of ethylene evolution by tomato (Lycopersicon esculentum Mill.) fruit were conducted with plants receiving NH4-N or NO3-N nutrition. Fruit of plants grown with NH4-N had a higher occurrence of blossom-end rot (BER), higher NH4-N concentrations, and higher ethylene evolution rates than fruit from plants grown with NO3-N. Fruit of plants grown with NO3-N showed no enhancement in ethylene evolution with BER development. Fertilizing these plants with Ca(NO3)2 doubled the average Ca concentration of fruit and restricted BER development. Ammonium suppressed Ca accumulation in fruit relative to those grown with NO3-N. Ethylene evolution increased as fruit from plants receiving NO3-N ripened, but without a concomitant increase in NH4-N concentrations in the fruit. Ammonium accumulation in fruit induced BER and enhanced ethylene evolution. These relationships were unique, for NH4-N accumulation did not seem to be a naturally occurring phenomenon in ripening fruit or in fruit that have BER arising from other causal factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call