Abstract

Tracer studies with avocado tissues indicate that methionine is converted to ethylene at stages of the climacteric rise and the climacteric peak, but not at the preclimacteric stage. The results suggest that the control of ethylene biosynthesis is at a step after methionine is synthesized. The endogenous content of methionine was found to be so low that methionine must be actively turned over for ethylene biosynthesis during the stages when the rate of ethylene production is high. Oxygen was found to be essential for this conversion, indicating that at least one of the steps in conversion of methionine to ethylene is oxygen-dependent. The ability of methionine and its keto analogue (alpha-keto-gamma-methylthiobutyric acid) to serve as ethylene precursors by apple tissues was compared. Chemical and kinetic evidence support the view that methionine is a closer precursor of ethylene than its keto analogue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.