Abstract

We have investigated the saturated ethylene layer on Ni(110) by low-energy electron diffraction (LEED), angle-resolved ultraviolet photoemission spectroscopy (ARUPS), and near-edge x-ray-absorption fine structure (NEXAFS). This layer exhibits a c(2\ifmmode\times\else\texttimes\fi{}4) LEED pattern that corresponds to a structure containing two adsorbates per primitive unit cell. The ethylene molecules are adsorbed with the molecular plane parallel to the surface and the C-C axis preferentially aligned along the [11\ifmmode\bar\else\textasciimacron\fi{}0] direction of the substrate, as is independently determined from the ARUPS and NEXAFS experiments. The two-dimensional (2D) adsorbate band structure is determined from the ARUPS spectra at various photon energies. Except for the \ensuremath{\pi} orbital, all ethylene-derived bands show significant dispersion (up to 2 eV), but no splitting as would be expected for a structure with two molecules per unit cell. The experimentally determined band structure is reproduced in all details by extended-H\"uckel-theory calculations for an unsupported ethylene layer. The structural model derived from LEED, ARUPS, and NEXAFS is confirmed both by force field and by the 2D band-structure calculations. This indicates that the adsorbate-adsorbate interactions are essentially decoupled from the adsorbate-substrate interaction, that is responsible for the chemisorption bond.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call