Abstract

Populus canker is a widespread disease that seriously threatens the survival of trees. Phytohormones are considered as effective chemical molecules improving plant resistance to various diseases. Ethylene is an important phytohormone that is extensively involved in the regulation of plant growth, development, and stress responses, but how ethylene and ethylene signaling regulates defense responses in woody plants is still unclear. Here, we showed that ethylene positively regulates the responses of poplar to canker caused by the hemibiotrophic fungus Dothiorella gregaria. Treatment of Populus tomentosa with 1-aminocyclopropane-1-carboxylic acid (ACC, the biosynthetic precursor of ethylene) significantly enhanced disease resistance, accompanied by the induction of pathogen-related protein (PR) gene expression and H2 O2 accumulation. Blocking ethylene biosynthesis using aminoethoxyvinyl glycine (AVG, a specific inhibitor of ethylene biosynthesis) repressed the disease resistance. Overexpression of the ethylene biosynthesis gene PtoACO7 in Populus tomentosa promoted defense responses and disease resistance. Furthermore, we demonstrated that the ethylene-induced defense response is independent of the salicylic acid pathway, but needs ROS signaling. ACC or PtoACO7 overexpression induced expressions of PtoRbohD/RbohF, which encode NADPH oxidases, and elevated H2 O2 levels in poplar. Inhibition of the NADPH oxidase compromised ethylene-induced disease resistance and PR gene expressions, while H2 O2 application could completely rescue the AVG-caused disease hypersensitivity. Therefore, the involvement of ethylene in disease resistance is done by activation of PR gene expressions and ROS production. Our results also showed that modifying ethylene biosynthesis or its signaling pathway has a great potential for improving disease resistance in woody plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.